We have applied the finite-difference contrast-source inversion (FDCSI) method to seismic full-waveform inversion problems. The FDCSI method is an iterative nonlinear inversion algorithm. However, unlike the nonlinear conjugate gradient method and the Gauss-Newton method, FDCSI does not solve any full forward problem explicitly in each iterative step of the inversion process. This feature makes the method very efficient in solving large-scale computational problems. It is shown that FDCSI, with a significant lower computation cost, can produce inversion results comparable in quality to those produced by the Gauss-Newton method and better than those produced by the nonlinear conjugate gradient method. Another attractive feature of the FDCSI method is that it is capable of employing an inhomogeneous background medium without any extra or special effort. This feature is useful when dealing with time-lapse inversion problems where the objective is to reconstruct changes between the baseline and the monitor model. By using the baseline model as the background medium in crosswell seismic monitoring problems, high quality time-lapse inversion results are obtained.
展开▼